Рассчитать высоту треугольника со сторонами 96, 66 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 66 + 62}{2}} \normalsize = 112}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112(112-96)(112-66)(112-62)}}{66}\normalsize = 61.520376}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112(112-96)(112-66)(112-62)}}{96}\normalsize = 42.2952585}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112(112-96)(112-66)(112-62)}}{62}\normalsize = 65.4894325}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 66 и 62 равна 61.520376
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 66 и 62 равна 42.2952585
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 66 и 62 равна 65.4894325
Ссылка на результат
?n1=96&n2=66&n3=62
Найти высоту треугольника со сторонами 91, 63 и 36
Найти высоту треугольника со сторонами 69, 55 и 46
Найти высоту треугольника со сторонами 121, 118 и 57
Найти высоту треугольника со сторонами 104, 97 и 82
Найти высоту треугольника со сторонами 126, 126 и 101
Найти высоту треугольника со сторонами 143, 141 и 68
Найти высоту треугольника со сторонами 69, 55 и 46
Найти высоту треугольника со сторонами 121, 118 и 57
Найти высоту треугольника со сторонами 104, 97 и 82
Найти высоту треугольника со сторонами 126, 126 и 101
Найти высоту треугольника со сторонами 143, 141 и 68