Рассчитать высоту треугольника со сторонами 96, 68 и 39

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 68 + 39}{2}} \normalsize = 101.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{101.5(101.5-96)(101.5-68)(101.5-39)}}{68}\normalsize = 31.7978577}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{101.5(101.5-96)(101.5-68)(101.5-39)}}{96}\normalsize = 22.5234825}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{101.5(101.5-96)(101.5-68)(101.5-39)}}{39}\normalsize = 55.4424185}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 68 и 39 равна 31.7978577
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 68 и 39 равна 22.5234825
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 68 и 39 равна 55.4424185
Ссылка на результат
?n1=96&n2=68&n3=39