Рассчитать высоту треугольника со сторонами 96, 68 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 68 + 66}{2}} \normalsize = 115}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{115(115-96)(115-68)(115-66)}}{68}\normalsize = 65.9771836}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{115(115-96)(115-68)(115-66)}}{96}\normalsize = 46.7338384}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{115(115-96)(115-68)(115-66)}}{66}\normalsize = 67.9764922}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 68 и 66 равна 65.9771836
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 68 и 66 равна 46.7338384
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 68 и 66 равна 67.9764922
Ссылка на результат
?n1=96&n2=68&n3=66
Найти высоту треугольника со сторонами 111, 70 и 49
Найти высоту треугольника со сторонами 149, 96 и 55
Найти высоту треугольника со сторонами 88, 85 и 56
Найти высоту треугольника со сторонами 61, 56 и 23
Найти высоту треугольника со сторонами 85, 53 и 37
Найти высоту треугольника со сторонами 112, 92 и 74
Найти высоту треугольника со сторонами 149, 96 и 55
Найти высоту треугольника со сторонами 88, 85 и 56
Найти высоту треугольника со сторонами 61, 56 и 23
Найти высоту треугольника со сторонами 85, 53 и 37
Найти высоту треугольника со сторонами 112, 92 и 74