Рассчитать высоту треугольника со сторонами 96, 72 и 36

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 72 + 36}{2}} \normalsize = 102}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{102(102-96)(102-72)(102-36)}}{72}\normalsize = 30.5777697}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{102(102-96)(102-72)(102-36)}}{96}\normalsize = 22.9333273}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{102(102-96)(102-72)(102-36)}}{36}\normalsize = 61.1555394}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 72 и 36 равна 30.5777697
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 72 и 36 равна 22.9333273
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 72 и 36 равна 61.1555394
Ссылка на результат
?n1=96&n2=72&n3=36