Рассчитать высоту треугольника со сторонами 96, 75 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 75 + 27}{2}} \normalsize = 99}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{99(99-96)(99-75)(99-27)}}{75}\normalsize = 19.1037588}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{99(99-96)(99-75)(99-27)}}{96}\normalsize = 14.9248116}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{99(99-96)(99-75)(99-27)}}{27}\normalsize = 53.0659966}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 75 и 27 равна 19.1037588
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 75 и 27 равна 14.9248116
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 75 и 27 равна 53.0659966
Ссылка на результат
?n1=96&n2=75&n3=27
Найти высоту треугольника со сторонами 107, 100 и 93
Найти высоту треугольника со сторонами 145, 105 и 44
Найти высоту треугольника со сторонами 140, 113 и 44
Найти высоту треугольника со сторонами 62, 58 и 12
Найти высоту треугольника со сторонами 103, 97 и 54
Найти высоту треугольника со сторонами 94, 84 и 29
Найти высоту треугольника со сторонами 145, 105 и 44
Найти высоту треугольника со сторонами 140, 113 и 44
Найти высоту треугольника со сторонами 62, 58 и 12
Найти высоту треугольника со сторонами 103, 97 и 54
Найти высоту треугольника со сторонами 94, 84 и 29