Рассчитать высоту треугольника со сторонами 96, 77 и 25
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 77 + 25}{2}} \normalsize = 99}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{99(99-96)(99-77)(99-25)}}{77}\normalsize = 18.0611207}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{99(99-96)(99-77)(99-25)}}{96}\normalsize = 14.4865239}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{99(99-96)(99-77)(99-25)}}{25}\normalsize = 55.6282518}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 77 и 25 равна 18.0611207
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 77 и 25 равна 14.4865239
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 77 и 25 равна 55.6282518
Ссылка на результат
?n1=96&n2=77&n3=25
Найти высоту треугольника со сторонами 126, 94 и 72
Найти высоту треугольника со сторонами 90, 60 и 31
Найти высоту треугольника со сторонами 89, 63 и 63
Найти высоту треугольника со сторонами 120, 105 и 105
Найти высоту треугольника со сторонами 129, 97 и 50
Найти высоту треугольника со сторонами 142, 120 и 99
Найти высоту треугольника со сторонами 90, 60 и 31
Найти высоту треугольника со сторонами 89, 63 и 63
Найти высоту треугольника со сторонами 120, 105 и 105
Найти высоту треугольника со сторонами 129, 97 и 50
Найти высоту треугольника со сторонами 142, 120 и 99