Рассчитать высоту треугольника со сторонами 96, 78 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 78 + 26}{2}} \normalsize = 100}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{100(100-96)(100-78)(100-26)}}{78}\normalsize = 20.6915292}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{100(100-96)(100-78)(100-26)}}{96}\normalsize = 16.8118675}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{100(100-96)(100-78)(100-26)}}{26}\normalsize = 62.0745877}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 78 и 26 равна 20.6915292
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 78 и 26 равна 16.8118675
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 78 и 26 равна 62.0745877
Ссылка на результат
?n1=96&n2=78&n3=26
Найти высоту треугольника со сторонами 78, 59 и 53
Найти высоту треугольника со сторонами 99, 74 и 42
Найти высоту треугольника со сторонами 143, 140 и 126
Найти высоту треугольника со сторонами 147, 105 и 99
Найти высоту треугольника со сторонами 140, 137 и 60
Найти высоту треугольника со сторонами 95, 83 и 63
Найти высоту треугольника со сторонами 99, 74 и 42
Найти высоту треугольника со сторонами 143, 140 и 126
Найти высоту треугольника со сторонами 147, 105 и 99
Найти высоту треугольника со сторонами 140, 137 и 60
Найти высоту треугольника со сторонами 95, 83 и 63