Рассчитать высоту треугольника со сторонами 96, 78 и 70

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 78 + 70}{2}} \normalsize = 122}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122(122-96)(122-78)(122-70)}}{78}\normalsize = 69.0764472}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122(122-96)(122-78)(122-70)}}{96}\normalsize = 56.1246133}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122(122-96)(122-78)(122-70)}}{70}\normalsize = 76.9708983}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 78 и 70 равна 69.0764472
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 78 и 70 равна 56.1246133
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 78 и 70 равна 76.9708983
Ссылка на результат
?n1=96&n2=78&n3=70