Рассчитать высоту треугольника со сторонами 96, 81 и 59

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 81 + 59}{2}} \normalsize = 118}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118(118-96)(118-81)(118-59)}}{81}\normalsize = 58.7792701}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118(118-96)(118-81)(118-59)}}{96}\normalsize = 49.5950091}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118(118-96)(118-81)(118-59)}}{59}\normalsize = 80.696964}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 81 и 59 равна 58.7792701
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 81 и 59 равна 49.5950091
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 81 и 59 равна 80.696964
Ссылка на результат
?n1=96&n2=81&n3=59