Рассчитать высоту треугольника со сторонами 96, 82 и 19

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 82 + 19}{2}} \normalsize = 98.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{98.5(98.5-96)(98.5-82)(98.5-19)}}{82}\normalsize = 13.8621246}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{98.5(98.5-96)(98.5-82)(98.5-19)}}{96}\normalsize = 11.8405648}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{98.5(98.5-96)(98.5-82)(98.5-19)}}{19}\normalsize = 59.8260116}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 82 и 19 равна 13.8621246
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 82 и 19 равна 11.8405648
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 82 и 19 равна 59.8260116
Ссылка на результат
?n1=96&n2=82&n3=19