Рассчитать высоту треугольника со сторонами 96, 85 и 65
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 85 + 65}{2}} \normalsize = 123}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{123(123-96)(123-85)(123-65)}}{85}\normalsize = 63.6577527}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{123(123-96)(123-85)(123-65)}}{96}\normalsize = 56.3636352}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{123(123-96)(123-85)(123-65)}}{65}\normalsize = 83.2447536}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 85 и 65 равна 63.6577527
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 85 и 65 равна 56.3636352
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 85 и 65 равна 83.2447536
Ссылка на результат
?n1=96&n2=85&n3=65
Найти высоту треугольника со сторонами 34, 34 и 1
Найти высоту треугольника со сторонами 145, 114 и 100
Найти высоту треугольника со сторонами 66, 43 и 25
Найти высоту треугольника со сторонами 100, 97 и 63
Найти высоту треугольника со сторонами 113, 110 и 52
Найти высоту треугольника со сторонами 90, 82 и 77
Найти высоту треугольника со сторонами 145, 114 и 100
Найти высоту треугольника со сторонами 66, 43 и 25
Найти высоту треугольника со сторонами 100, 97 и 63
Найти высоту треугольника со сторонами 113, 110 и 52
Найти высоту треугольника со сторонами 90, 82 и 77