Рассчитать высоту треугольника со сторонами 96, 85 и 79
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 85 + 79}{2}} \normalsize = 130}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{130(130-96)(130-85)(130-79)}}{85}\normalsize = 74.939976}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{130(130-96)(130-85)(130-79)}}{96}\normalsize = 66.3531037}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{130(130-96)(130-85)(130-79)}}{79}\normalsize = 80.6316197}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 85 и 79 равна 74.939976
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 85 и 79 равна 66.3531037
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 85 и 79 равна 80.6316197
Ссылка на результат
?n1=96&n2=85&n3=79
Найти высоту треугольника со сторонами 84, 74 и 53
Найти высоту треугольника со сторонами 137, 117 и 38
Найти высоту треугольника со сторонами 130, 94 и 81
Найти высоту треугольника со сторонами 133, 88 и 85
Найти высоту треугольника со сторонами 78, 54 и 38
Найти высоту треугольника со сторонами 103, 69 и 45
Найти высоту треугольника со сторонами 137, 117 и 38
Найти высоту треугольника со сторонами 130, 94 и 81
Найти высоту треугольника со сторонами 133, 88 и 85
Найти высоту треугольника со сторонами 78, 54 и 38
Найти высоту треугольника со сторонами 103, 69 и 45