Рассчитать высоту треугольника со сторонами 96, 88 и 16
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 88 + 16}{2}} \normalsize = 100}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{100(100-96)(100-88)(100-16)}}{88}\normalsize = 14.4313708}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{100(100-96)(100-88)(100-16)}}{96}\normalsize = 13.2287566}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{100(100-96)(100-88)(100-16)}}{16}\normalsize = 79.3725393}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 88 и 16 равна 14.4313708
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 88 и 16 равна 13.2287566
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 88 и 16 равна 79.3725393
Ссылка на результат
?n1=96&n2=88&n3=16
Найти высоту треугольника со сторонами 149, 139 и 48
Найти высоту треугольника со сторонами 134, 130 и 76
Найти высоту треугольника со сторонами 65, 62 и 51
Найти высоту треугольника со сторонами 130, 126 и 117
Найти высоту треугольника со сторонами 150, 104 и 88
Найти высоту треугольника со сторонами 137, 128 и 51
Найти высоту треугольника со сторонами 134, 130 и 76
Найти высоту треугольника со сторонами 65, 62 и 51
Найти высоту треугольника со сторонами 130, 126 и 117
Найти высоту треугольника со сторонами 150, 104 и 88
Найти высоту треугольника со сторонами 137, 128 и 51