Рассчитать высоту треугольника со сторонами 96, 88 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 88 + 30}{2}} \normalsize = 107}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107(107-96)(107-88)(107-30)}}{88}\normalsize = 29.8234388}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107(107-96)(107-88)(107-30)}}{96}\normalsize = 27.3381522}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107(107-96)(107-88)(107-30)}}{30}\normalsize = 87.4820871}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 88 и 30 равна 29.8234388
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 88 и 30 равна 27.3381522
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 88 и 30 равна 87.4820871
Ссылка на результат
?n1=96&n2=88&n3=30
Найти высоту треугольника со сторонами 128, 103 и 77
Найти высоту треугольника со сторонами 134, 115 и 34
Найти высоту треугольника со сторонами 71, 50 и 46
Найти высоту треугольника со сторонами 41, 40 и 17
Найти высоту треугольника со сторонами 122, 104 и 50
Найти высоту треугольника со сторонами 116, 107 и 75
Найти высоту треугольника со сторонами 134, 115 и 34
Найти высоту треугольника со сторонами 71, 50 и 46
Найти высоту треугольника со сторонами 41, 40 и 17
Найти высоту треугольника со сторонами 122, 104 и 50
Найти высоту треугольника со сторонами 116, 107 и 75