Рассчитать высоту треугольника со сторонами 96, 90 и 38
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 90 + 38}{2}} \normalsize = 112}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112(112-96)(112-90)(112-38)}}{90}\normalsize = 37.9562841}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112(112-96)(112-90)(112-38)}}{96}\normalsize = 35.5840164}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112(112-96)(112-90)(112-38)}}{38}\normalsize = 89.8964625}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 90 и 38 равна 37.9562841
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 90 и 38 равна 35.5840164
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 90 и 38 равна 89.8964625
Ссылка на результат
?n1=96&n2=90&n3=38
Найти высоту треугольника со сторонами 89, 75 и 15
Найти высоту треугольника со сторонами 84, 74 и 54
Найти высоту треугольника со сторонами 136, 88 и 51
Найти высоту треугольника со сторонами 124, 82 и 43
Найти высоту треугольника со сторонами 144, 134 и 48
Найти высоту треугольника со сторонами 80, 55 и 27
Найти высоту треугольника со сторонами 84, 74 и 54
Найти высоту треугольника со сторонами 136, 88 и 51
Найти высоту треугольника со сторонами 124, 82 и 43
Найти высоту треугольника со сторонами 144, 134 и 48
Найти высоту треугольника со сторонами 80, 55 и 27