Рассчитать высоту треугольника со сторонами 96, 90 и 86
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 90 + 86}{2}} \normalsize = 136}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{136(136-96)(136-90)(136-86)}}{90}\normalsize = 78.6051234}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{136(136-96)(136-90)(136-86)}}{96}\normalsize = 73.6923032}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{136(136-96)(136-90)(136-86)}}{86}\normalsize = 82.2611757}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 90 и 86 равна 78.6051234
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 90 и 86 равна 73.6923032
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 90 и 86 равна 82.2611757
Ссылка на результат
?n1=96&n2=90&n3=86
Найти высоту треугольника со сторонами 93, 87 и 63
Найти высоту треугольника со сторонами 117, 103 и 31
Найти высоту треугольника со сторонами 132, 93 и 59
Найти высоту треугольника со сторонами 62, 40 и 39
Найти высоту треугольника со сторонами 123, 96 и 58
Найти высоту треугольника со сторонами 87, 75 и 69
Найти высоту треугольника со сторонами 117, 103 и 31
Найти высоту треугольника со сторонами 132, 93 и 59
Найти высоту треугольника со сторонами 62, 40 и 39
Найти высоту треугольника со сторонами 123, 96 и 58
Найти высоту треугольника со сторонами 87, 75 и 69