Рассчитать высоту треугольника со сторонами 96, 94 и 74
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 94 + 74}{2}} \normalsize = 132}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132(132-96)(132-94)(132-74)}}{94}\normalsize = 68.8566918}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132(132-96)(132-94)(132-74)}}{96}\normalsize = 67.4221774}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132(132-96)(132-94)(132-74)}}{74}\normalsize = 87.4666085}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 94 и 74 равна 68.8566918
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 94 и 74 равна 67.4221774
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 94 и 74 равна 87.4666085
Ссылка на результат
?n1=96&n2=94&n3=74
Найти высоту треугольника со сторонами 149, 125 и 90
Найти высоту треугольника со сторонами 115, 90 и 59
Найти высоту треугольника со сторонами 138, 93 и 75
Найти высоту треугольника со сторонами 97, 83 и 82
Найти высоту треугольника со сторонами 115, 100 и 20
Найти высоту треугольника со сторонами 125, 82 и 66
Найти высоту треугольника со сторонами 115, 90 и 59
Найти высоту треугольника со сторонами 138, 93 и 75
Найти высоту треугольника со сторонами 97, 83 и 82
Найти высоту треугольника со сторонами 115, 100 и 20
Найти высоту треугольника со сторонами 125, 82 и 66