Рассчитать высоту треугольника со сторонами 96, 96 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 96 + 67}{2}} \normalsize = 129.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129.5(129.5-96)(129.5-96)(129.5-67)}}{96}\normalsize = 62.7882621}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129.5(129.5-96)(129.5-96)(129.5-67)}}{96}\normalsize = 62.7882621}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129.5(129.5-96)(129.5-96)(129.5-67)}}{67}\normalsize = 89.9652711}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 96 и 67 равна 62.7882621
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 96 и 67 равна 62.7882621
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 96 и 67 равна 89.9652711
Ссылка на результат
?n1=96&n2=96&n3=67
Найти высоту треугольника со сторонами 148, 146 и 47
Найти высоту треугольника со сторонами 133, 131 и 41
Найти высоту треугольника со сторонами 111, 92 и 48
Найти высоту треугольника со сторонами 60, 48 и 14
Найти высоту треугольника со сторонами 120, 116 и 46
Найти высоту треугольника со сторонами 81, 58 и 27
Найти высоту треугольника со сторонами 133, 131 и 41
Найти высоту треугольника со сторонами 111, 92 и 48
Найти высоту треугольника со сторонами 60, 48 и 14
Найти высоту треугольника со сторонами 120, 116 и 46
Найти высоту треугольника со сторонами 81, 58 и 27