Рассчитать высоту треугольника со сторонами 97, 60 и 48

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 60 + 48}{2}} \normalsize = 102.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{102.5(102.5-97)(102.5-60)(102.5-48)}}{60}\normalsize = 38.0903303}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{102.5(102.5-97)(102.5-60)(102.5-48)}}{97}\normalsize = 23.5610291}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{102.5(102.5-97)(102.5-60)(102.5-48)}}{48}\normalsize = 47.6129129}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 60 и 48 равна 38.0903303
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 60 и 48 равна 23.5610291
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 60 и 48 равна 47.6129129
Ссылка на результат
?n1=97&n2=60&n3=48