Рассчитать высоту треугольника со сторонами 97, 61 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 61 + 60}{2}} \normalsize = 109}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{109(109-97)(109-61)(109-60)}}{61}\normalsize = 57.5072621}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{109(109-97)(109-61)(109-60)}}{97}\normalsize = 36.1643607}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{109(109-97)(109-61)(109-60)}}{60}\normalsize = 58.4657164}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 61 и 60 равна 57.5072621
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 61 и 60 равна 36.1643607
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 61 и 60 равна 58.4657164
Ссылка на результат
?n1=97&n2=61&n3=60
Найти высоту треугольника со сторонами 97, 81 и 31
Найти высоту треугольника со сторонами 149, 108 и 84
Найти высоту треугольника со сторонами 111, 75 и 68
Найти высоту треугольника со сторонами 88, 75 и 54
Найти высоту треугольника со сторонами 41, 37 и 37
Найти высоту треугольника со сторонами 136, 105 и 85
Найти высоту треугольника со сторонами 149, 108 и 84
Найти высоту треугольника со сторонами 111, 75 и 68
Найти высоту треугольника со сторонами 88, 75 и 54
Найти высоту треугольника со сторонами 41, 37 и 37
Найти высоту треугольника со сторонами 136, 105 и 85