Рассчитать высоту треугольника со сторонами 97, 63 и 45
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 63 + 45}{2}} \normalsize = 102.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{102.5(102.5-97)(102.5-63)(102.5-45)}}{63}\normalsize = 35.9223875}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{102.5(102.5-97)(102.5-63)(102.5-45)}}{97}\normalsize = 23.3310352}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{102.5(102.5-97)(102.5-63)(102.5-45)}}{45}\normalsize = 50.2913426}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 63 и 45 равна 35.9223875
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 63 и 45 равна 23.3310352
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 63 и 45 равна 50.2913426
Ссылка на результат
?n1=97&n2=63&n3=45
Найти высоту треугольника со сторонами 70, 69 и 41
Найти высоту треугольника со сторонами 78, 76 и 17
Найти высоту треугольника со сторонами 116, 110 и 38
Найти высоту треугольника со сторонами 85, 63 и 39
Найти высоту треугольника со сторонами 147, 85 и 82
Найти высоту треугольника со сторонами 145, 126 и 23
Найти высоту треугольника со сторонами 78, 76 и 17
Найти высоту треугольника со сторонами 116, 110 и 38
Найти высоту треугольника со сторонами 85, 63 и 39
Найти высоту треугольника со сторонами 147, 85 и 82
Найти высоту треугольника со сторонами 145, 126 и 23