Рассчитать высоту треугольника со сторонами 97, 65 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 65 + 50}{2}} \normalsize = 106}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{106(106-97)(106-65)(106-50)}}{65}\normalsize = 45.5382952}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{106(106-97)(106-65)(106-50)}}{97}\normalsize = 30.5153525}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{106(106-97)(106-65)(106-50)}}{50}\normalsize = 59.1997838}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 65 и 50 равна 45.5382952
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 65 и 50 равна 30.5153525
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 65 и 50 равна 59.1997838
Ссылка на результат
?n1=97&n2=65&n3=50
Найти высоту треугольника со сторонами 150, 127 и 102
Найти высоту треугольника со сторонами 131, 101 и 77
Найти высоту треугольника со сторонами 112, 78 и 77
Найти высоту треугольника со сторонами 126, 83 и 78
Найти высоту треугольника со сторонами 139, 82 и 63
Найти высоту треугольника со сторонами 69, 65 и 36
Найти высоту треугольника со сторонами 131, 101 и 77
Найти высоту треугольника со сторонами 112, 78 и 77
Найти высоту треугольника со сторонами 126, 83 и 78
Найти высоту треугольника со сторонами 139, 82 и 63
Найти высоту треугольника со сторонами 69, 65 и 36