Рассчитать высоту треугольника со сторонами 97, 65 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 65 + 56}{2}} \normalsize = 109}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{109(109-97)(109-65)(109-56)}}{65}\normalsize = 53.7384065}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{109(109-97)(109-65)(109-56)}}{97}\normalsize = 36.0102724}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{109(109-97)(109-65)(109-56)}}{56}\normalsize = 62.3749361}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 65 и 56 равна 53.7384065
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 65 и 56 равна 36.0102724
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 65 и 56 равна 62.3749361
Ссылка на результат
?n1=97&n2=65&n3=56
Найти высоту треугольника со сторонами 131, 125 и 12
Найти высоту треугольника со сторонами 112, 75 и 47
Найти высоту треугольника со сторонами 110, 83 и 55
Найти высоту треугольника со сторонами 97, 81 и 58
Найти высоту треугольника со сторонами 107, 96 и 56
Найти высоту треугольника со сторонами 142, 138 и 91
Найти высоту треугольника со сторонами 112, 75 и 47
Найти высоту треугольника со сторонами 110, 83 и 55
Найти высоту треугольника со сторонами 97, 81 и 58
Найти высоту треугольника со сторонами 107, 96 и 56
Найти высоту треугольника со сторонами 142, 138 и 91