Рассчитать высоту треугольника со сторонами 97, 67 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 67 + 50}{2}} \normalsize = 107}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107(107-97)(107-67)(107-50)}}{67}\normalsize = 46.6245341}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107(107-97)(107-67)(107-50)}}{97}\normalsize = 32.2045751}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107(107-97)(107-67)(107-50)}}{50}\normalsize = 62.4768757}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 67 и 50 равна 46.6245341
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 67 и 50 равна 32.2045751
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 67 и 50 равна 62.4768757
Ссылка на результат
?n1=97&n2=67&n3=50
Найти высоту треугольника со сторонами 128, 96 и 81
Найти высоту треугольника со сторонами 84, 49 и 46
Найти высоту треугольника со сторонами 118, 96 и 52
Найти высоту треугольника со сторонами 23, 23 и 14
Найти высоту треугольника со сторонами 118, 118 и 96
Найти высоту треугольника со сторонами 114, 111 и 23
Найти высоту треугольника со сторонами 84, 49 и 46
Найти высоту треугольника со сторонами 118, 96 и 52
Найти высоту треугольника со сторонами 23, 23 и 14
Найти высоту треугольника со сторонами 118, 118 и 96
Найти высоту треугольника со сторонами 114, 111 и 23