Рассчитать высоту треугольника со сторонами 97, 80 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 80 + 19}{2}} \normalsize = 98}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{98(98-97)(98-80)(98-19)}}{80}\normalsize = 9.33260414}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{98(98-97)(98-80)(98-19)}}{97}\normalsize = 7.6969931}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{98(98-97)(98-80)(98-19)}}{19}\normalsize = 39.2951753}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 80 и 19 равна 9.33260414
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 80 и 19 равна 7.6969931
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 80 и 19 равна 39.2951753
Ссылка на результат
?n1=97&n2=80&n3=19
Найти высоту треугольника со сторонами 56, 33 и 31
Найти высоту треугольника со сторонами 142, 123 и 26
Найти высоту треугольника со сторонами 42, 39 и 36
Найти высоту треугольника со сторонами 87, 63 и 54
Найти высоту треугольника со сторонами 89, 85 и 17
Найти высоту треугольника со сторонами 79, 75 и 28
Найти высоту треугольника со сторонами 142, 123 и 26
Найти высоту треугольника со сторонами 42, 39 и 36
Найти высоту треугольника со сторонами 87, 63 и 54
Найти высоту треугольника со сторонами 89, 85 и 17
Найти высоту треугольника со сторонами 79, 75 и 28