Рассчитать высоту треугольника со сторонами 97, 80 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 80 + 33}{2}} \normalsize = 105}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{105(105-97)(105-80)(105-33)}}{80}\normalsize = 30.7408523}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{105(105-97)(105-80)(105-33)}}{97}\normalsize = 25.3532802}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{105(105-97)(105-80)(105-33)}}{33}\normalsize = 74.5232783}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 80 и 33 равна 30.7408523
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 80 и 33 равна 25.3532802
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 80 и 33 равна 74.5232783
Ссылка на результат
?n1=97&n2=80&n3=33
Найти высоту треугольника со сторонами 149, 121 и 54
Найти высоту треугольника со сторонами 138, 127 и 53
Найти высоту треугольника со сторонами 136, 134 и 19
Найти высоту треугольника со сторонами 115, 78 и 45
Найти высоту треугольника со сторонами 95, 71 и 60
Найти высоту треугольника со сторонами 124, 114 и 112
Найти высоту треугольника со сторонами 138, 127 и 53
Найти высоту треугольника со сторонами 136, 134 и 19
Найти высоту треугольника со сторонами 115, 78 и 45
Найти высоту треугольника со сторонами 95, 71 и 60
Найти высоту треугольника со сторонами 124, 114 и 112