Рассчитать высоту треугольника со сторонами 97, 80 и 76

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 80 + 76}{2}} \normalsize = 126.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{126.5(126.5-97)(126.5-80)(126.5-76)}}{80}\normalsize = 74.0062579}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{126.5(126.5-97)(126.5-80)(126.5-76)}}{97}\normalsize = 61.036089}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{126.5(126.5-97)(126.5-80)(126.5-76)}}{76}\normalsize = 77.9013241}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 80 и 76 равна 74.0062579
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 80 и 76 равна 61.036089
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 80 и 76 равна 77.9013241
Ссылка на результат
?n1=97&n2=80&n3=76