Рассчитать высоту треугольника со сторонами 97, 83 и 82

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 83 + 82}{2}} \normalsize = 131}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131(131-97)(131-83)(131-82)}}{83}\normalsize = 77.9912118}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131(131-97)(131-83)(131-82)}}{97}\normalsize = 66.7347482}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131(131-97)(131-83)(131-82)}}{82}\normalsize = 78.9423241}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 83 и 82 равна 77.9912118
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 83 и 82 равна 66.7347482
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 83 и 82 равна 78.9423241
Ссылка на результат
?n1=97&n2=83&n3=82