Рассчитать высоту треугольника со сторонами 97, 86 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 86 + 15}{2}} \normalsize = 99}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{99(99-97)(99-86)(99-15)}}{86}\normalsize = 10.8137284}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{99(99-97)(99-86)(99-15)}}{97}\normalsize = 9.58742933}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{99(99-97)(99-86)(99-15)}}{15}\normalsize = 61.9987097}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 86 и 15 равна 10.8137284
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 86 и 15 равна 9.58742933
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 86 и 15 равна 61.9987097
Ссылка на результат
?n1=97&n2=86&n3=15
Найти высоту треугольника со сторонами 141, 122 и 75
Найти высоту треугольника со сторонами 85, 74 и 12
Найти высоту треугольника со сторонами 75, 72 и 71
Найти высоту треугольника со сторонами 46, 37 и 11
Найти высоту треугольника со сторонами 81, 79 и 5
Найти высоту треугольника со сторонами 125, 116 и 73
Найти высоту треугольника со сторонами 85, 74 и 12
Найти высоту треугольника со сторонами 75, 72 и 71
Найти высоту треугольника со сторонами 46, 37 и 11
Найти высоту треугольника со сторонами 81, 79 и 5
Найти высоту треугольника со сторонами 125, 116 и 73