Рассчитать высоту треугольника со сторонами 97, 86 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 86 + 66}{2}} \normalsize = 124.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{124.5(124.5-97)(124.5-86)(124.5-66)}}{86}\normalsize = 64.578933}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{124.5(124.5-97)(124.5-86)(124.5-66)}}{97}\normalsize = 57.2555488}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{124.5(124.5-97)(124.5-86)(124.5-66)}}{66}\normalsize = 84.1483066}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 86 и 66 равна 64.578933
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 86 и 66 равна 57.2555488
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 86 и 66 равна 84.1483066
Ссылка на результат
?n1=97&n2=86&n3=66
Найти высоту треугольника со сторонами 16, 13 и 8
Найти высоту треугольника со сторонами 121, 99 и 52
Найти высоту треугольника со сторонами 124, 108 и 40
Найти высоту треугольника со сторонами 149, 142 и 130
Найти высоту треугольника со сторонами 131, 110 и 38
Найти высоту треугольника со сторонами 104, 98 и 31
Найти высоту треугольника со сторонами 121, 99 и 52
Найти высоту треугольника со сторонами 124, 108 и 40
Найти высоту треугольника со сторонами 149, 142 и 130
Найти высоту треугольника со сторонами 131, 110 и 38
Найти высоту треугольника со сторонами 104, 98 и 31