Рассчитать высоту треугольника со сторонами 97, 86 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 86 + 66}{2}} \normalsize = 124.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{124.5(124.5-97)(124.5-86)(124.5-66)}}{86}\normalsize = 64.578933}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{124.5(124.5-97)(124.5-86)(124.5-66)}}{97}\normalsize = 57.2555488}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{124.5(124.5-97)(124.5-86)(124.5-66)}}{66}\normalsize = 84.1483066}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 86 и 66 равна 64.578933
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 86 и 66 равна 57.2555488
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 86 и 66 равна 84.1483066
Ссылка на результат
?n1=97&n2=86&n3=66
Найти высоту треугольника со сторонами 143, 139 и 116
Найти высоту треугольника со сторонами 119, 113 и 97
Найти высоту треугольника со сторонами 119, 97 и 83
Найти высоту треугольника со сторонами 88, 85 и 81
Найти высоту треугольника со сторонами 122, 91 и 47
Найти высоту треугольника со сторонами 75, 59 и 23
Найти высоту треугольника со сторонами 119, 113 и 97
Найти высоту треугольника со сторонами 119, 97 и 83
Найти высоту треугольника со сторонами 88, 85 и 81
Найти высоту треугольника со сторонами 122, 91 и 47
Найти высоту треугольника со сторонами 75, 59 и 23