Рассчитать высоту треугольника со сторонами 97, 87 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 87 + 51}{2}} \normalsize = 117.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117.5(117.5-97)(117.5-87)(117.5-51)}}{87}\normalsize = 50.812124}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117.5(117.5-97)(117.5-87)(117.5-51)}}{97}\normalsize = 45.5737607}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117.5(117.5-97)(117.5-87)(117.5-51)}}{51}\normalsize = 86.6795056}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 87 и 51 равна 50.812124
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 87 и 51 равна 45.5737607
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 87 и 51 равна 86.6795056
Ссылка на результат
?n1=97&n2=87&n3=51
Найти высоту треугольника со сторонами 147, 124 и 50
Найти высоту треугольника со сторонами 78, 67 и 56
Найти высоту треугольника со сторонами 135, 134 и 112
Найти высоту треугольника со сторонами 86, 86 и 19
Найти высоту треугольника со сторонами 134, 111 и 32
Найти высоту треугольника со сторонами 95, 80 и 73
Найти высоту треугольника со сторонами 78, 67 и 56
Найти высоту треугольника со сторонами 135, 134 и 112
Найти высоту треугольника со сторонами 86, 86 и 19
Найти высоту треугольника со сторонами 134, 111 и 32
Найти высоту треугольника со сторонами 95, 80 и 73