Рассчитать высоту треугольника со сторонами 97, 89 и 58

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 89 + 58}{2}} \normalsize = 122}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122(122-97)(122-89)(122-58)}}{89}\normalsize = 57.0343985}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122(122-97)(122-89)(122-58)}}{97}\normalsize = 52.3305306}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122(122-97)(122-89)(122-58)}}{58}\normalsize = 87.5183011}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 89 и 58 равна 57.0343985
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 89 и 58 равна 52.3305306
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 89 и 58 равна 87.5183011
Ссылка на результат
?n1=97&n2=89&n3=58