Рассчитать высоту треугольника со сторонами 97, 90 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 90 + 13}{2}} \normalsize = 100}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{100(100-97)(100-90)(100-13)}}{90}\normalsize = 11.3529242}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{100(100-97)(100-90)(100-13)}}{97}\normalsize = 10.5336411}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{100(100-97)(100-90)(100-13)}}{13}\normalsize = 78.5971678}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 90 и 13 равна 11.3529242
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 90 и 13 равна 10.5336411
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 90 и 13 равна 78.5971678
Ссылка на результат
?n1=97&n2=90&n3=13
Найти высоту треугольника со сторонами 63, 36 и 36
Найти высоту треугольника со сторонами 112, 69 и 69
Найти высоту треугольника со сторонами 92, 87 и 15
Найти высоту треугольника со сторонами 85, 62 и 61
Найти высоту треугольника со сторонами 102, 83 и 37
Найти высоту треугольника со сторонами 144, 133 и 89
Найти высоту треугольника со сторонами 112, 69 и 69
Найти высоту треугольника со сторонами 92, 87 и 15
Найти высоту треугольника со сторонами 85, 62 и 61
Найти высоту треугольника со сторонами 102, 83 и 37
Найти высоту треугольника со сторонами 144, 133 и 89