Рассчитать высоту треугольника со сторонами 97, 90 и 15

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 90 + 15}{2}} \normalsize = 101}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{101(101-97)(101-90)(101-15)}}{90}\normalsize = 13.7380071}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{101(101-97)(101-90)(101-15)}}{97}\normalsize = 12.7466045}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{101(101-97)(101-90)(101-15)}}{15}\normalsize = 82.4280427}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 90 и 15 равна 13.7380071
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 90 и 15 равна 12.7466045
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 90 и 15 равна 82.4280427
Ссылка на результат
?n1=97&n2=90&n3=15