Рассчитать высоту треугольника со сторонами 97, 94 и 78
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 94 + 78}{2}} \normalsize = 134.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{134.5(134.5-97)(134.5-94)(134.5-78)}}{94}\normalsize = 72.282082}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{134.5(134.5-97)(134.5-94)(134.5-78)}}{97}\normalsize = 70.0465537}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{134.5(134.5-97)(134.5-94)(134.5-78)}}{78}\normalsize = 87.1091758}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 94 и 78 равна 72.282082
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 94 и 78 равна 70.0465537
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 94 и 78 равна 87.1091758
Ссылка на результат
?n1=97&n2=94&n3=78
Найти высоту треугольника со сторонами 120, 115 и 65
Найти высоту треугольника со сторонами 147, 95 и 72
Найти высоту треугольника со сторонами 149, 98 и 56
Найти высоту треугольника со сторонами 113, 109 и 87
Найти высоту треугольника со сторонами 119, 116 и 19
Найти высоту треугольника со сторонами 90, 79 и 39
Найти высоту треугольника со сторонами 147, 95 и 72
Найти высоту треугольника со сторонами 149, 98 и 56
Найти высоту треугольника со сторонами 113, 109 и 87
Найти высоту треугольника со сторонами 119, 116 и 19
Найти высоту треугольника со сторонами 90, 79 и 39