Рассчитать высоту треугольника со сторонами 98, 56 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{98 + 56 + 46}{2}} \normalsize = 100}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{100(100-98)(100-56)(100-46)}}{56}\normalsize = 24.6195542}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{100(100-98)(100-56)(100-46)}}{98}\normalsize = 14.0683167}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{100(100-98)(100-56)(100-46)}}{46}\normalsize = 29.9716312}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 98, 56 и 46 равна 24.6195542
Высота треугольника опущенная с вершины A на сторону BC со сторонами 98, 56 и 46 равна 14.0683167
Высота треугольника опущенная с вершины C на сторону AB со сторонами 98, 56 и 46 равна 29.9716312
Ссылка на результат
?n1=98&n2=56&n3=46
Найти высоту треугольника со сторонами 72, 71 и 35
Найти высоту треугольника со сторонами 144, 117 и 39
Найти высоту треугольника со сторонами 70, 56 и 36
Найти высоту треугольника со сторонами 30, 28 и 23
Найти высоту треугольника со сторонами 147, 132 и 104
Найти высоту треугольника со сторонами 130, 124 и 26
Найти высоту треугольника со сторонами 144, 117 и 39
Найти высоту треугольника со сторонами 70, 56 и 36
Найти высоту треугольника со сторонами 30, 28 и 23
Найти высоту треугольника со сторонами 147, 132 и 104
Найти высоту треугольника со сторонами 130, 124 и 26