Рассчитать высоту треугольника со сторонами 98, 66 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{98 + 66 + 50}{2}} \normalsize = 107}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107(107-98)(107-66)(107-50)}}{66}\normalsize = 45.4599088}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107(107-98)(107-66)(107-50)}}{98}\normalsize = 30.6158569}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107(107-98)(107-66)(107-50)}}{50}\normalsize = 60.0070796}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 98, 66 и 50 равна 45.4599088
Высота треугольника опущенная с вершины A на сторону BC со сторонами 98, 66 и 50 равна 30.6158569
Высота треугольника опущенная с вершины C на сторону AB со сторонами 98, 66 и 50 равна 60.0070796
Ссылка на результат
?n1=98&n2=66&n3=50
Найти высоту треугольника со сторонами 20, 14 и 14
Найти высоту треугольника со сторонами 149, 119 и 110
Найти высоту треугольника со сторонами 117, 109 и 86
Найти высоту треугольника со сторонами 127, 97 и 44
Найти высоту треугольника со сторонами 89, 85 и 14
Найти высоту треугольника со сторонами 91, 90 и 36
Найти высоту треугольника со сторонами 149, 119 и 110
Найти высоту треугольника со сторонами 117, 109 и 86
Найти высоту треугольника со сторонами 127, 97 и 44
Найти высоту треугольника со сторонами 89, 85 и 14
Найти высоту треугольника со сторонами 91, 90 и 36