Рассчитать высоту треугольника со сторонами 98, 74 и 32
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{98 + 74 + 32}{2}} \normalsize = 102}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{102(102-98)(102-74)(102-32)}}{74}\normalsize = 24.1688726}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{102(102-98)(102-74)(102-32)}}{98}\normalsize = 18.2499651}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{102(102-98)(102-74)(102-32)}}{32}\normalsize = 55.890518}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 98, 74 и 32 равна 24.1688726
Высота треугольника опущенная с вершины A на сторону BC со сторонами 98, 74 и 32 равна 18.2499651
Высота треугольника опущенная с вершины C на сторону AB со сторонами 98, 74 и 32 равна 55.890518
Ссылка на результат
?n1=98&n2=74&n3=32
Найти высоту треугольника со сторонами 149, 110 и 73
Найти высоту треугольника со сторонами 126, 113 и 73
Найти высоту треугольника со сторонами 134, 123 и 61
Найти высоту треугольника со сторонами 119, 94 и 81
Найти высоту треугольника со сторонами 76, 74 и 44
Найти высоту треугольника со сторонами 135, 124 и 64
Найти высоту треугольника со сторонами 126, 113 и 73
Найти высоту треугольника со сторонами 134, 123 и 61
Найти высоту треугольника со сторонами 119, 94 и 81
Найти высоту треугольника со сторонами 76, 74 и 44
Найти высоту треугольника со сторонами 135, 124 и 64