Рассчитать высоту треугольника со сторонами 98, 76 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{98 + 76 + 35}{2}} \normalsize = 104.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{104.5(104.5-98)(104.5-76)(104.5-35)}}{76}\normalsize = 30.5243243}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{104.5(104.5-98)(104.5-76)(104.5-35)}}{98}\normalsize = 23.671925}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{104.5(104.5-98)(104.5-76)(104.5-35)}}{35}\normalsize = 66.2813899}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 98, 76 и 35 равна 30.5243243
Высота треугольника опущенная с вершины A на сторону BC со сторонами 98, 76 и 35 равна 23.671925
Высота треугольника опущенная с вершины C на сторону AB со сторонами 98, 76 и 35 равна 66.2813899
Ссылка на результат
?n1=98&n2=76&n3=35
Найти высоту треугольника со сторонами 148, 106 и 98
Найти высоту треугольника со сторонами 126, 126 и 126
Найти высоту треугольника со сторонами 123, 114 и 19
Найти высоту треугольника со сторонами 150, 117 и 91
Найти высоту треугольника со сторонами 143, 105 и 97
Найти высоту треугольника со сторонами 135, 128 и 112
Найти высоту треугольника со сторонами 126, 126 и 126
Найти высоту треугольника со сторонами 123, 114 и 19
Найти высоту треугольника со сторонами 150, 117 и 91
Найти высоту треугольника со сторонами 143, 105 и 97
Найти высоту треугольника со сторонами 135, 128 и 112