Рассчитать высоту треугольника со сторонами 98, 81 и 74

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
p=a+b+c2\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
S=p(pa)(pb)(pc)\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
S=12bhb\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
12bhb=p(pa)(pb)(pc)\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
hb=2p(pa)(pb)(pc)b\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
ha=2p(pa)(pb)(pc)a\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
hc=2p(pa)(pb)(pc)c\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
p=98+81+742=126.5\color{#0000FF}{p = \Large{\frac{98 + 81 + 74}{2}} \normalsize = 126.5}
hb=2126.5(126.598)(126.581)(126.574)81=72.4599483\color{#0000FF}{h_b = \Large\frac{2\sqrt{126.5(126.5-98)(126.5-81)(126.5-74)}}{81}\normalsize = 72.4599483}
ha=2126.5(126.598)(126.581)(126.574)98=59.8903654\color{#0000FF}{h_a = \Large\frac{2\sqrt{126.5(126.5-98)(126.5-81)(126.5-74)}}{98}\normalsize = 59.8903654}
hc=2126.5(126.598)(126.581)(126.574)74=79.3142677\color{#0000FF}{h_c = \Large\frac{2\sqrt{126.5(126.5-98)(126.5-81)(126.5-74)}}{74}\normalsize = 79.3142677}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 98, 81 и 74 равна 72.4599483
Высота треугольника опущенная с вершины A на сторону BC со сторонами 98, 81 и 74 равна 59.8903654
Высота треугольника опущенная с вершины C на сторону AB со сторонами 98, 81 и 74 равна 79.3142677
Ссылка на результат
?n1=98&n2=81&n3=74