Рассчитать высоту треугольника со сторонами 98, 81 и 74
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{98 + 81 + 74}{2}} \normalsize = 126.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{126.5(126.5-98)(126.5-81)(126.5-74)}}{81}\normalsize = 72.4599483}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{126.5(126.5-98)(126.5-81)(126.5-74)}}{98}\normalsize = 59.8903654}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{126.5(126.5-98)(126.5-81)(126.5-74)}}{74}\normalsize = 79.3142677}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 98, 81 и 74 равна 72.4599483
Высота треугольника опущенная с вершины A на сторону BC со сторонами 98, 81 и 74 равна 59.8903654
Высота треугольника опущенная с вершины C на сторону AB со сторонами 98, 81 и 74 равна 79.3142677
Ссылка на результат
?n1=98&n2=81&n3=74
Найти высоту треугольника со сторонами 93, 79 и 18
Найти высоту треугольника со сторонами 98, 61 и 40
Найти высоту треугольника со сторонами 125, 111 и 19
Найти высоту треугольника со сторонами 148, 113 и 100
Найти высоту треугольника со сторонами 100, 98 и 92
Найти высоту треугольника со сторонами 72, 44 и 35
Найти высоту треугольника со сторонами 98, 61 и 40
Найти высоту треугольника со сторонами 125, 111 и 19
Найти высоту треугольника со сторонами 148, 113 и 100
Найти высоту треугольника со сторонами 100, 98 и 92
Найти высоту треугольника со сторонами 72, 44 и 35