Рассчитать высоту треугольника со сторонами 98, 87 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{98 + 87 + 14}{2}} \normalsize = 99.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{99.5(99.5-98)(99.5-87)(99.5-14)}}{87}\normalsize = 9.18133802}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{99.5(99.5-98)(99.5-87)(99.5-14)}}{98}\normalsize = 8.15077967}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{99.5(99.5-98)(99.5-87)(99.5-14)}}{14}\normalsize = 57.0554577}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 98, 87 и 14 равна 9.18133802
Высота треугольника опущенная с вершины A на сторону BC со сторонами 98, 87 и 14 равна 8.15077967
Высота треугольника опущенная с вершины C на сторону AB со сторонами 98, 87 и 14 равна 57.0554577
Ссылка на результат
?n1=98&n2=87&n3=14
Найти высоту треугольника со сторонами 105, 80 и 31
Найти высоту треугольника со сторонами 116, 99 и 66
Найти высоту треугольника со сторонами 84, 60 и 33
Найти высоту треугольника со сторонами 111, 99 и 89
Найти высоту треугольника со сторонами 91, 76 и 35
Найти высоту треугольника со сторонами 133, 126 и 67
Найти высоту треугольника со сторонами 116, 99 и 66
Найти высоту треугольника со сторонами 84, 60 и 33
Найти высоту треугольника со сторонами 111, 99 и 89
Найти высоту треугольника со сторонами 91, 76 и 35
Найти высоту треугольника со сторонами 133, 126 и 67