Рассчитать высоту треугольника со сторонами 98, 89 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{98 + 89 + 54}{2}} \normalsize = 120.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{120.5(120.5-98)(120.5-89)(120.5-54)}}{89}\normalsize = 53.5538714}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{120.5(120.5-98)(120.5-89)(120.5-54)}}{98}\normalsize = 48.6356587}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{120.5(120.5-98)(120.5-89)(120.5-54)}}{54}\normalsize = 88.2647139}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 98, 89 и 54 равна 53.5538714
Высота треугольника опущенная с вершины A на сторону BC со сторонами 98, 89 и 54 равна 48.6356587
Высота треугольника опущенная с вершины C на сторону AB со сторонами 98, 89 и 54 равна 88.2647139
Ссылка на результат
?n1=98&n2=89&n3=54
Найти высоту треугольника со сторонами 131, 112 и 112
Найти высоту треугольника со сторонами 121, 104 и 77
Найти высоту треугольника со сторонами 146, 142 и 86
Найти высоту треугольника со сторонами 122, 102 и 43
Найти высоту треугольника со сторонами 140, 106 и 45
Найти высоту треугольника со сторонами 145, 121 и 107
Найти высоту треугольника со сторонами 121, 104 и 77
Найти высоту треугольника со сторонами 146, 142 и 86
Найти высоту треугольника со сторонами 122, 102 и 43
Найти высоту треугольника со сторонами 140, 106 и 45
Найти высоту треугольника со сторонами 145, 121 и 107