Рассчитать высоту треугольника со сторонами 98, 95 и 73
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{98 + 95 + 73}{2}} \normalsize = 133}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{133(133-98)(133-95)(133-73)}}{95}\normalsize = 68.5857128}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{133(133-98)(133-95)(133-73)}}{98}\normalsize = 66.4861502}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{133(133-98)(133-95)(133-73)}}{73}\normalsize = 89.2553797}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 98, 95 и 73 равна 68.5857128
Высота треугольника опущенная с вершины A на сторону BC со сторонами 98, 95 и 73 равна 66.4861502
Высота треугольника опущенная с вершины C на сторону AB со сторонами 98, 95 и 73 равна 89.2553797
Ссылка на результат
?n1=98&n2=95&n3=73
Найти высоту треугольника со сторонами 63, 55 и 48
Найти высоту треугольника со сторонами 133, 122 и 59
Найти высоту треугольника со сторонами 120, 118 и 49
Найти высоту треугольника со сторонами 111, 73 и 42
Найти высоту треугольника со сторонами 80, 77 и 51
Найти высоту треугольника со сторонами 127, 108 и 98
Найти высоту треугольника со сторонами 133, 122 и 59
Найти высоту треугольника со сторонами 120, 118 и 49
Найти высоту треугольника со сторонами 111, 73 и 42
Найти высоту треугольника со сторонами 80, 77 и 51
Найти высоту треугольника со сторонами 127, 108 и 98