Рассчитать высоту треугольника со сторонами 99, 52 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{99 + 52 + 51}{2}} \normalsize = 101}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{101(101-99)(101-52)(101-51)}}{52}\normalsize = 27.0573574}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{101(101-99)(101-52)(101-51)}}{99}\normalsize = 14.2119453}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{101(101-99)(101-52)(101-51)}}{51}\normalsize = 27.5878939}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 99, 52 и 51 равна 27.0573574
Высота треугольника опущенная с вершины A на сторону BC со сторонами 99, 52 и 51 равна 14.2119453
Высота треугольника опущенная с вершины C на сторону AB со сторонами 99, 52 и 51 равна 27.5878939
Ссылка на результат
?n1=99&n2=52&n3=51
Найти высоту треугольника со сторонами 69, 48 и 38
Найти высоту треугольника со сторонами 113, 88 и 88
Найти высоту треугольника со сторонами 134, 92 и 78
Найти высоту треугольника со сторонами 100, 68 и 35
Найти высоту треугольника со сторонами 43, 40 и 28
Найти высоту треугольника со сторонами 73, 73 и 68
Найти высоту треугольника со сторонами 113, 88 и 88
Найти высоту треугольника со сторонами 134, 92 и 78
Найти высоту треугольника со сторонами 100, 68 и 35
Найти высоту треугольника со сторонами 43, 40 и 28
Найти высоту треугольника со сторонами 73, 73 и 68