Рассчитать высоту треугольника со сторонами 99, 60 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{99 + 60 + 43}{2}} \normalsize = 101}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{101(101-99)(101-60)(101-43)}}{60}\normalsize = 23.1025732}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{101(101-99)(101-60)(101-43)}}{99}\normalsize = 14.0015595}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{101(101-99)(101-60)(101-43)}}{43}\normalsize = 32.2361487}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 99, 60 и 43 равна 23.1025732
Высота треугольника опущенная с вершины A на сторону BC со сторонами 99, 60 и 43 равна 14.0015595
Высота треугольника опущенная с вершины C на сторону AB со сторонами 99, 60 и 43 равна 32.2361487
Ссылка на результат
?n1=99&n2=60&n3=43
Найти высоту треугольника со сторонами 122, 121 и 64
Найти высоту треугольника со сторонами 138, 131 и 56
Найти высоту треугольника со сторонами 110, 84 и 28
Найти высоту треугольника со сторонами 78, 49 и 42
Найти высоту треугольника со сторонами 149, 126 и 38
Найти высоту треугольника со сторонами 104, 96 и 34
Найти высоту треугольника со сторонами 138, 131 и 56
Найти высоту треугольника со сторонами 110, 84 и 28
Найти высоту треугольника со сторонами 78, 49 и 42
Найти высоту треугольника со сторонами 149, 126 и 38
Найти высоту треугольника со сторонами 104, 96 и 34