Рассчитать высоту треугольника со сторонами 99, 71 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{99 + 71 + 31}{2}} \normalsize = 100.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{100.5(100.5-99)(100.5-71)(100.5-31)}}{71}\normalsize = 15.6604313}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{100.5(100.5-99)(100.5-71)(100.5-31)}}{99}\normalsize = 11.2312184}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{100.5(100.5-99)(100.5-71)(100.5-31)}}{31}\normalsize = 35.8674393}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 99, 71 и 31 равна 15.6604313
Высота треугольника опущенная с вершины A на сторону BC со сторонами 99, 71 и 31 равна 11.2312184
Высота треугольника опущенная с вершины C на сторону AB со сторонами 99, 71 и 31 равна 35.8674393
Ссылка на результат
?n1=99&n2=71&n3=31
Найти высоту треугольника со сторонами 67, 59 и 59
Найти высоту треугольника со сторонами 120, 116 и 70
Найти высоту треугольника со сторонами 123, 99 и 63
Найти высоту треугольника со сторонами 97, 93 и 84
Найти высоту треугольника со сторонами 109, 80 и 41
Найти высоту треугольника со сторонами 100, 94 и 68
Найти высоту треугольника со сторонами 120, 116 и 70
Найти высоту треугольника со сторонами 123, 99 и 63
Найти высоту треугольника со сторонами 97, 93 и 84
Найти высоту треугольника со сторонами 109, 80 и 41
Найти высоту треугольника со сторонами 100, 94 и 68