Рассчитать высоту треугольника со сторонами 99, 72 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{99 + 72 + 63}{2}} \normalsize = 117}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117(117-99)(117-72)(117-63)}}{72}\normalsize = 62.8390802}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117(117-99)(117-72)(117-63)}}{99}\normalsize = 45.7011492}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117(117-99)(117-72)(117-63)}}{63}\normalsize = 71.8160917}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 99, 72 и 63 равна 62.8390802
Высота треугольника опущенная с вершины A на сторону BC со сторонами 99, 72 и 63 равна 45.7011492
Высота треугольника опущенная с вершины C на сторону AB со сторонами 99, 72 и 63 равна 71.8160917
Ссылка на результат
?n1=99&n2=72&n3=63
Найти высоту треугольника со сторонами 106, 94 и 39
Найти высоту треугольника со сторонами 127, 91 и 89
Найти высоту треугольника со сторонами 148, 135 и 134
Найти высоту треугольника со сторонами 136, 122 и 119
Найти высоту треугольника со сторонами 128, 111 и 29
Найти высоту треугольника со сторонами 133, 108 и 56
Найти высоту треугольника со сторонами 127, 91 и 89
Найти высоту треугольника со сторонами 148, 135 и 134
Найти высоту треугольника со сторонами 136, 122 и 119
Найти высоту треугольника со сторонами 128, 111 и 29
Найти высоту треугольника со сторонами 133, 108 и 56