Рассчитать высоту треугольника со сторонами 99, 75 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{99 + 75 + 75}{2}} \normalsize = 124.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{124.5(124.5-99)(124.5-75)(124.5-75)}}{75}\normalsize = 74.3752943}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{124.5(124.5-99)(124.5-75)(124.5-75)}}{99}\normalsize = 56.3449199}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{124.5(124.5-99)(124.5-75)(124.5-75)}}{75}\normalsize = 74.3752943}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 99, 75 и 75 равна 74.3752943
Высота треугольника опущенная с вершины A на сторону BC со сторонами 99, 75 и 75 равна 56.3449199
Высота треугольника опущенная с вершины C на сторону AB со сторонами 99, 75 и 75 равна 74.3752943
Ссылка на результат
?n1=99&n2=75&n3=75
Найти высоту треугольника со сторонами 57, 56 и 8
Найти высоту треугольника со сторонами 124, 88 и 50
Найти высоту треугольника со сторонами 87, 80 и 53
Найти высоту треугольника со сторонами 107, 66 и 48
Найти высоту треугольника со сторонами 119, 83 и 39
Найти высоту треугольника со сторонами 86, 74 и 49
Найти высоту треугольника со сторонами 124, 88 и 50
Найти высоту треугольника со сторонами 87, 80 и 53
Найти высоту треугольника со сторонами 107, 66 и 48
Найти высоту треугольника со сторонами 119, 83 и 39
Найти высоту треугольника со сторонами 86, 74 и 49