Рассчитать высоту треугольника со сторонами 99, 77 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{99 + 77 + 51}{2}} \normalsize = 113.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{113.5(113.5-99)(113.5-77)(113.5-51)}}{77}\normalsize = 50.3277649}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{113.5(113.5-99)(113.5-77)(113.5-51)}}{99}\normalsize = 39.1438171}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{113.5(113.5-99)(113.5-77)(113.5-51)}}{51}\normalsize = 75.9850568}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 99, 77 и 51 равна 50.3277649
Высота треугольника опущенная с вершины A на сторону BC со сторонами 99, 77 и 51 равна 39.1438171
Высота треугольника опущенная с вершины C на сторону AB со сторонами 99, 77 и 51 равна 75.9850568
Ссылка на результат
?n1=99&n2=77&n3=51
Найти высоту треугольника со сторонами 143, 142 и 137
Найти высоту треугольника со сторонами 129, 128 и 85
Найти высоту треугольника со сторонами 144, 95 и 73
Найти высоту треугольника со сторонами 96, 83 и 34
Найти высоту треугольника со сторонами 150, 144 и 111
Найти высоту треугольника со сторонами 66, 62 и 51
Найти высоту треугольника со сторонами 129, 128 и 85
Найти высоту треугольника со сторонами 144, 95 и 73
Найти высоту треугольника со сторонами 96, 83 и 34
Найти высоту треугольника со сторонами 150, 144 и 111
Найти высоту треугольника со сторонами 66, 62 и 51