Рассчитать высоту треугольника со сторонами 99, 85 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{99 + 85 + 35}{2}} \normalsize = 109.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{109.5(109.5-99)(109.5-85)(109.5-35)}}{85}\normalsize = 34.0858366}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{109.5(109.5-99)(109.5-85)(109.5-35)}}{99}\normalsize = 29.2656173}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{109.5(109.5-99)(109.5-85)(109.5-35)}}{35}\normalsize = 82.7798889}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 99, 85 и 35 равна 34.0858366
Высота треугольника опущенная с вершины A на сторону BC со сторонами 99, 85 и 35 равна 29.2656173
Высота треугольника опущенная с вершины C на сторону AB со сторонами 99, 85 и 35 равна 82.7798889
Ссылка на результат
?n1=99&n2=85&n3=35
Найти высоту треугольника со сторонами 118, 102 и 84
Найти высоту треугольника со сторонами 134, 126 и 35
Найти высоту треугольника со сторонами 72, 67 и 46
Найти высоту треугольника со сторонами 143, 117 и 100
Найти высоту треугольника со сторонами 92, 81 и 51
Найти высоту треугольника со сторонами 59, 52 и 46
Найти высоту треугольника со сторонами 134, 126 и 35
Найти высоту треугольника со сторонами 72, 67 и 46
Найти высоту треугольника со сторонами 143, 117 и 100
Найти высоту треугольника со сторонами 92, 81 и 51
Найти высоту треугольника со сторонами 59, 52 и 46